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A Note on Girard Bimodules†
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Any (involutive) quantale is embeddable into the quantale of ~-endomorphisms
of a Girard bimodule over Q. Any Q-module (Q-valued module) is representable
as a concrete submodule of the simple involutive quantale of ~-endomorphisms
of a Girard bimodule over Q.

Around 1985, the notion of a quantale arose in pure algebra, i.e., a
complete lattice Q with an associative binary operation ? that distributes over
arbitrary joins from left and right. The study of such algebras goes back to
the work of Ward and Dilworth on residuated lattices. It has become a
useful tool in studying noncommutative topology, linear logic, and C*-algebra
theory. Motivated by the notion of a Girard quantale, a Girard bimodule M
is defined exactly as a complete lattice with a duality such that it is both a
right and left Q-module and a weak compatibility condition between the
module actions is satisfied. In this paper we present the thesis that Girard
bimodules form a natural context for a concrete representation of (involu-
tive) quantales.

Our main motivating source was ref. 8, where the investigation of I-
simple involutive quantales is developed. Such involutive quantales could
play a similar role as points in topological spaces or irreducible representations
in C*-algebras [4] or Hilbert modules [3]. This note is closely related to refs.
5–7, where the interested reader can find unexplained terms and notation
concerning the subject. For facts concerning quantales and Q-modules in
general we refer to refs. 10 and 11. For motivating examples concerning Q-
modules we recommend refs. 1 and 9.
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The paper is organized as follows. Section 1 introduces the notion of a
left (right) Q-module and a Girard bimodule. The motivation for studying such
a structure is given. We prove that any (involutive) quantale is embeddable into
the simple involutive quantale of ~-endomorphisms of a Girard bimodule
over Q.

In Section 2 we show that any Q-module is representable as a concrete
submodule of the simple involutive quantale of ~-endomorphisms of a Girard
bimodule over Q, i.e., any Q-module can be equipped with a structure of a
Q8-valued module such that Q is a subquantale of Q8. Moreover, any Q-
valued module is representable as a concrete submodule of the simple involu-
tive quantale of ~-endomorphisms of a Girard bimodule over Q such that
the representation is inner product-preserving.

We begin by establishing the symbols and notation in this paper.
A quantale is a complete lattice Q with an associative binary multiplica-

tion satisfying

x ? ~
iPI

xi 5 ~
iPI

x ? xi and (~
iPI

xi) ? x 5 ~
iPI

xi ? x

for all x, xi P Q, i P I (I is a set). Since a ? —: Q → Q and —? a: Q →
Q preserve arbitrary suprema, they have right adjoint we shall denote by
a →r —: Q → Q and a →l —: Q → Q, respectively. 1 denotes the greatest
element of Q, 0 is the smallest element of Q. A quantale Q is said to be
unital if there is an element e P Q such that e ? a 5 a 5 a ? e for all a P
Q. A subquantale Q8 of a quantale Q is a subset of Q closed under ~ and ?.

By a morphism of quantales will be meant a ~- and ?-preserving mapping
f : Q → Q8.

A nontrivial quantale Q is said to be simple if any surjective homomor-
phism Q → Q8 is either an isomorphism or a constant morphism.

By the quantale 4(M ) of endomorphisms of the sup-lattice M will be
meant the simple unital quantale of sup-preserving mappings from M to itself,
with the supremum given by the pointwise ordering of mappings, with the
multiplication corresponding to the composition of mappings, and with the
unit given by the identity mapping.

1. Q-MODULES

Definition 1.1[1, 11]. Let Q be a quantale. A left module over Q (briefly,
a left Q-module) is a sup-lattice M, together with a module action -●-: Q 3
M → M satisfying

(a ? b) ● m 5 a ● (b ● m) (M1)

(~ S) 5 ~{s ● m: s P S} (M2)
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a ● ~ X 5 ~{a ● x: x P X} (M3)

for all a, b P Q, m P M, S # Q, X # M. So we have two maps — →→l —:
M 3 M → Q and — →→r —: Q 3 M → M such that, for all a P Q, m, n,
P M, a ● m # n iff a # m →→l n iff m # a →→r n. M is called a unital Q-
module if Q is a unital quantale with the unit e and e ● m 5 m for all m P M.

Let M and N be modules over Q and let f : M → N be a sup-lattice
homomorphism, f is a module homomorphism if f (a ● m) 5 a ● f (m) for all
a P Q, m P M.

Note first that if M is a sup-lattice, then M is a left Q(M )-module such
that f ● m 5 f(m) for all f P Q(M ) and all m P M. Second, we may dually
define the notion of a (unital) right Q-module with a right multiplication L.
We then have two maps — →→R —: M 3 M → Q and — →→L —: Q 3 M
→ M such that, for all a P Q, m, n P M, mLa # n iff a # m →→R n iff m
# a →→L n. Moreover, all propositions stated for left Q-modules are valid in
a dualized form for right Q-modules and conversely.

A bimodule M over a quantale Q is both a left Q-module with action
● and a right Q-module with action L.

For every left Q-module M we have a dual right Q-module Mop with
multiplication given by a →→r m. Similarly, for every right Q-module N we
have a dual left Q-module Mop. Note that, if M is unital, then Mop is unital.

Note that, for every involutive quantale Q and any left Q-module M
we have a right Q-module M* with the same lattice structure and a right
multiplication ●* defined by m ●* a 5 a* ● m. Following ref. 2, we shall
say that a left Q-module is involutive if a ● m 5 (a* →→r m')'. This is
equivalent to the fact that the quantale morphism f : Q → 4(M ) defined by
f (a)(m) 5 a ● m is a morphism of involutive quantales.

We shall denote by Q-Mod, resp. Mod-Q, the category of left Q-modules
resp., right Q-modules.

Let us make the following elementary observation. Evidently, for a
quantale Q, any left Q-module M is a left unital Q[e]-module with Q[e]
defined as in ref. 6 and the multiplication ●e defined by

(a ∨ ε) ●e m 5 Ha ● m if ε 5 0
a ● m ∨ m if ε 5 e

So we may always assume that any left quantale module is unital over a
unital quantale.

Note that, for any quantale Q, any left Q-module M and all n P M, the
antitone maps — →→l n: M → Q and — →→r n: Q → M form a Galois
connection between Q and M since, for all a P Q and all m P M, a # (a →→r

n) →→l n and m # (m →→l n) →→r n. So we have that m →→l n 5 ((m →→l n)
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→→r n) →→l n and a →→r n 5 ((a →→r n) →→l n) →→r n. The same holds for the
antitone maps — →→R n: M → Q and — →→L n: Q → M.

Definition 1.2. Let Q be a quantale. A Girard bimodule over Q is a
bimodule over Q with a duality ': M → M such that

a ● m 5 (a →→L m')'

for all a P Q, m P M.

Note that, in a Girard bimodule M, we have m L a 5 (a →→r m')'.
Namely, m L a # n iff m # a →→L n iff m # (a ● n')' iff m' $ a ● n'

iff n' # a →→r m' iff (a →→r m')' # n. Moreover, if Q8 is a a subquantale
of Q, we have that M is a Girard bimodule over Q8.

Lemma 1.3. Let Q be a quantale, M a left Q-module with a duality '.
Then M is a Girard bimodule with the right action L: M 3 Q → M defined
by m L a 5 (a →→r m')'.

Proof. Let a, b P Q, m P M. We have (m L b) L a # n iff (a →→r

(b →→r m'))' # n iff b →→r m' $ a ● n' iff m' $ b ● (a ● n') iff m' $
(b ? a) ● n' iff (b ? a) →→r m' $ n' iff ((b ? a) →→r m')' # n iff m L (b
? a) # n. Similarly, we can prove that m L—: Q → M and — L a: Q →
M are ~-preserving maps for all a P Q and m P M, i.e., we have a right
module action L. Let us prove that a ● m 5 (a →→L m')'. We have n $
(a →→L m')' iff n' # a →→L m' iff n' L a # m' iff (a →→r n)' # m' iff
a →→r n $ m iff a ● n # n. n

Definition 1.4 [10]. Let Q be a quantale. An element d P Q is called
a dualizing element iff for all a P Q, we have (a →r d ) →l d 5 a 5 (a →l

d ) →r d. An element c P Q is said to be cyclic iff a →l c 5 a →r c for all
a P Q. A quantale is called a Girard quantale iff it has a cyclic dualizing
element d.

Note that Girard quantales can be thought of as “Boolean quantales”
[10]. Then, by the next theorems, Girard bimodules can be thought of as
“Boolean modules” since we shall show that any Girard quantale is a Girard
bimodule and that any quantale (involutive) quantale is an (involutive) sub-
quantale of 4(M ) for a suitable Girard bimodule.

Proposition 1.5. Let Q be a unital quantale with a duality ' such that
a ? m 5 (a →l m')' for all a, m P Q, i.e., Q is a Girard bimodule over Q.
Then Q is a Girard quantale. Moreover, any Girard quantale is a Girard
bimodule over itself.

Proof. Let us put d 5 e'. We shall show that d is both cyclic and
dualizing. We have a →r e' 5 (e ? a)' 5 (a ? e)' 5 a →l e'. Similarly,
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(a →r e') →l e' 5 [(a → r e') ? e]' 5 [(e ? a)' ? e]' 5 a'' 5 a and (a
→l e') →r e' 5 a. The rest follows from Proposition 6.1.2 of ref. 10. n

Theorem 1.6. Let Q be quantale. Then we have a quantale embedding
iQ: Q → 4(M ) such that M is a Girard bimodule over Q.

Proof. By ref. 6, we know that any quantale Q is always embeddable
into an unital quantale. So we may assume that Q is a unital quantale with
the unit e. Let us define •: Q 3 (Q 3 Qop) → Q 3 Gop and L: (Q 3 Qop)
3 Q → Qop as follows: a • (m, n) 5 (a ? m, a →l n) and (m, n) L a 5 (m ?
a, a →r n) for all a, m, n P Q. Then, when we define a duality ': Q 3 Qop

→ Q 3 Qop by (m, n)' 5 (n, m), we have (a →→L (m, n)')' 5 (a →→L (n,
m))' 5 (~{p: p ? a # n}, `{q: m # a →r q})' 5 (`{q: m # a →r q},
~{p: p ? a # n}) 5 (a ? m, a →l n) 5 a ? (m, n). Let us put M 5 Q 3
Qop. Then M is a Girard bimodule and we have a morphism iQ: Q → 4(M )
of quantales defined by iQ(a)(m, n) 5 a • (m, n). Let iQ(a) 5 iQ(b). Then (a,
a →l e) 5 iQ(a)(e, e) 5 iQ(b)(e, e) 5 (b, b →l e), i.e., a 5 b and iQ is a
quantale embedding. n

Let w: M → N be a join-preserving morphism of ~-lattices. Then we
have a right adjoint map w¢: N → M preserving arbitrary meets. If M is a
~-lattice with a duality ', there is an involution on 4(M ) given by w*(m)
5 (w£(m'))'.

Theorem 1.7 [6]. Let Q be an involutive quantale. Then we have an
involutive quantale embedding IQ: K → 4(M ) such that M is an involutive
Girard bimodule over Q.

Proof. Again, by ref. 6, we know that any involutive quantale Q is
always involutively embeddable into a unital involutive quantale. So we may
assume that Q is an involutive unital quantale with the unit e. Let us define
•: Q 3 (Q 3 Qop) → Q 3 Qop and L: (Q 3 Qop) 3 Q → Q 3 Qop as
follows: a ● (m, n) 5 (a ? m, a* →r n) and (m, n) L a 5 (a* ? m, a →r n)
for all a, m, n P Q. Then we have (a →→L (m, n)')' 5 (a →→L (n, m))' 5
(~{p: p ? a* # n}, `{q: m # a →r q})' 5 (`{q: a ? m # q}, ~{p: p #
a* →r n}) 5 (a ? m, a* →i n) 5 ● (m, n). Let us put M 5 Q 3 Qop. Then
M is a Girard bimodule. Moreover, we have (a* →→r (m, n)')' 5 (a* →→r

(n, m))' 5 (~{p: a* ? p # n}, `{q: m # (a*)* →l q})' 5 (`{q: a ? m #
q}, ~{p: p # a* →r n}) 5 (a ? m, a* →r n) 5 a ● (m, n). We then have
a morphism IQ: Q → 4(M ) of involutive quantales defined by IQ(a)(m, n) 5
a ● (m, n) that is evidently a quantale embedding. n

2. Q-VALUED MODULES

In this section we shall show that any Q-valued module M is representable
together with the quantale Q as a concrete submodule and a concrete subquan-
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tale of the simple involutive quantale 4(S) for a suitable Girard bimodule S
such that the module action coincides with the usual composition of mappings
in 4(S).

Definition 2.1 Let Q be a unital quantale, M a right (left) Q-module.
We say that M is right (left) Q-valued if M is equipped with a map ^—, —&:
M 3 M → Q, called the inner product, such that for all a P Q, m, n P M,
and mi P M, where i P I, the following conditions are satisfied:

(i) ^m, n& L a 5 ^m, n L a& (a ? ^m, n& 5 ^a ● m, n&).
(ii) ~iPI ^mi, n& 5 ^~iPI mi , n&.

(iii) ~iPI ^m, mi& 5 ^m, ~iPI mi&.
(iv) ^—, m& 5 ^—, n& (^m, —& 5 ^n, —&) implies m 5 n.

A basic example of a right (left) Q-valued module is M 5 Q with the
inner product ^m, n& 5 m ? n; another example is any right (left) complete
ideal of Q with the same Q-valued inner product.

Definition 2.2. A representation of a right (left) Q-module M is a pair
of maps (F, w) such that S is a ∨-lattice with a duality, w: Q → 4(S) is a
representation of the quantale Q, and F: M → 4(S) is a ~-preserving one-
to-one map such that

F(m L a) 5 F(m) + w(a) [F(a ● m) 5 w(a) + F(m)]

for all a P Q and m P M. A representation of a right (left) Q-valued module
M is called inner product-preserving if w(^m, n&) 5 F*(m) + F(n) for all m,
n P M; here F*: M → 4(S) is a ~-preserving one-to-one map such that
F*(m) 5 F(m)*.

Theorem 2.3. Let Q be a unital quantale, M a right Q-module. Then we
have a representation (F, w) such that S is a Girard bimodule over Q.

Proof. First we shall show that any right Q-module M can be always
embedded into a certain quantale L(M ). Denote by N 5 Q 3 M the right
Q-module

We can identify each element m P M with the operator m,: Q → M
defined by a ° m L a and each element b P Q with the operator b^:
Q → Q given by b^(c) 5 b ? c. Note that b^ + c^ 5 (b ? c)^. Let L(M ) be
the subset of 4(N ) consisting of all ~-preserving maps on N that can be
represented by matrices of the form

F f g
h cG

f P 4(Q), g P Sup(M, Q), h P Sup(Q, M ), c P 4(M ). Note that the
composition of such matrices is defined as follows:
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F f1 g1

h1 c1
G + F f2 g2

h2 c2
G 5 F f1 + f2 ∨ g1 + h2 f1 + g2 ∨ g1 + c2

h1 + f2 ∨ c1 + h2 h1 + g2 ∨ c1 + c2
G

and evidently coincides with the usual composition of maps; here the action
is defined as

F f g
h cG(a, m) 5 ( f (a) ∨ g(m), h(a) ∨ c(m))

Similarly, the join of such matrices is defined by

~
iPI
F fi gi

hi ci
G 5 F~iPI fi ~iPI gi

~iPI hi ~iPI ci
G

Then L(M ) is a unital subquantale of 4(N ); the unit idN can be represented
by the matrix

FidQ 0
0 idM

G
L(M ) will enable us to exploit the representation theory of quantales

in studying M. We shall identify Q, M, and 4(M ) with subsets of L(M ) in
the obvious way:

Q > FQ^ 0
0 0G, M > F 0 0

M, 0G, 4(M ) > F0 0
0 4(M )G

After this identification, the module multiplication L: M 3 Q → M
becomes a part of the internal multiplication of L(M ); namely,

F 0 0
m, 0G + Fa^ 0

0 0G 5 F 0 0
(m L a), 0G

By Theorem 1.6, we have a quantale representation p: L(M ) → 4(S) such
that S is a Girard bimodule over the quantale L(M ). Then by restriction p
defines two maps w 5 p.Q and F 5 p.M which together constitute a
representation of the right Q-module M. n

Corollary 2.4. Any right (left) Q-module M can be equipped with a
structure of a right (left) Q8-valued module such that Q is a subquantale of Q8.

Proof. It follows from Theorem 2.3 if we put Q8 5 L(M ).

Theorem 2.5. Let Q be a unital quantale, M a right Q-valued module.
Then we have an inner product-preserving representation (F, w) such that S
is a Girard bimodule over Q.
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Proof. As before, we shall show that any right Q-valued module M
always can be embedded into a the quantale L(M ) from Theorem 2.3. Then
N 5 Q 3 M is equipped with the inner product

^(a, m), (b, n)& 5 a ? b ∨ ^m, n&

We can identify each element m P M with the operator m*: M → Q
defined by n ° ^m, n&. We may identify M with a subset of L(M ) in the
obvious way:

M > F0 M*
0 0 G

This subset is called the conjugate module of M and is denoted by M*. We
then put F* 5 p.M*. The Q-valued inner product ^m, n& of M becomes
simply the product m* + n,. Namely, we have

F0 m*
0 0 G + F 0 0

n, 0G 5 F^m, n&^ 0
0 0G

The rest follows from Theorem 2.3. n
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