A Note on Girard Bimodules[†]

Jan Paseka¹

Received December 8, 1999

Any (involutive) quantale is embeddable into the quantale of \lor -endomorphisms of a Girard bimodule over Q. Any Q-module (Q-valued module) is representable as a concrete submodule of the simple involutive quantale of \lor -endomorphisms of a Girard bimodule over Q.

Around 1985, the notion of a quantale arose in pure algebra, i.e., a complete lattice Q with an associative binary operation \cdot that distributes over arbitrary joins from left and right. The study of such algebras goes back to the work of Ward and Dilworth on residuated lattices. It has become a useful tool in studying noncommutative topology, linear logic, and C*-algebra theory. Motivated by the notion of a Girard quantale, a Girard bimodule M is defined exactly as a complete lattice with a duality such that it is both a right and left Q-module and a weak compatibility condition between the module actions is satisfied. In this paper we present the thesis that Girard bimodules form a natural context for a concrete representation of (involutive) quantales.

Our main motivating source was ref. 8, where the investigation of Isimple involutive quantales is developed. Such involutive quantales could play a similar role as points in topological spaces or irreducible representations in C*-algebras [4] or Hilbert modules [3]. This note is closely related to refs. 5–7, where the interested reader can find unexplained terms and notation concerning the subject. For facts concerning quantales and *Q*-modules in general we refer to refs. 10 and 11. For motivating examples concerning *Q*modules we recommend refs. 1 and 9.

0020-7748/00/0300-0805\$18.00/0 © 2000 Plenum Publishing Corporation

[†]This paper is dedicated to the memory of Prof. Gottfried T. Rüttimann.

¹Department of Mathematics, Masaryk University, 66295 Brno, Czech Republic; e-mail: paseka@math.muni.cz.

⁸⁰⁵

The paper is organized as follows. Section 1 introduces the notion of a left (right) Q-module and a Girard bimodule. The motivation for studying such a structure is given. We prove that any (involutive) quantale is embeddable into the simple involutive quantale of \bigvee -endomorphisms of a Girard bimodule over Q.

In Section 2 we show that any Q-module is representable as a concrete submodule of the simple involutive quantale of \bigvee -endomorphisms of a Girard bimodule over Q, i.e., any Q-module can be equipped with a structure of a Q'-valued module such that Q is a subquantale of Q'. Moreover, any Q-valued module is representable as a concrete submodule of the simple involutive quantale of \bigvee -endomorphisms of a Girard bimodule over Q such that the representation is inner product-preserving.

We begin by establishing the symbols and notation in this paper.

A *quantale* is a complete lattice Q with an associative binary multiplication satisfying

$$x \cdot \bigvee_{i \in I} x_i = \bigvee_{i \in I} x \cdot x_i$$
 and $(\bigvee_{i \in I} x_i) \cdot x = \bigvee_{i \in I} x_i \cdot x_i$

for all $x, x_i \in Q$, $i \in I$ (*I* is a set). Since $a \cdot \dots : Q \to Q$ and $\dots : a: Q \to Q$ preserve arbitrary suprema, they have right adjoint we shall denote by $a \to_r \dots : Q \to Q$ and $a \to_l \dots : Q \to Q$, respectively. 1 denotes the greatest element of Q, 0 is the smallest element of Q. A quantale Q is said to be *unital* if there is an element $e \in Q$ such that $e \cdot a = a = a \cdot e$ for all $a \in Q$. A subquantale Q' of a quantale Q is a subset of Q closed under \bigvee and \cdot .

By a *morphism of quantales* will be meant a \lor - and \cdot -preserving mapping $f: Q \to Q'$.

A nontrivial quantale Q is said to be *simple* if any surjective homomorphism $Q \rightarrow Q'$ is either an isomorphism or a constant morphism.

By the quantale $\mathfrak{Q}(M)$ of endomorphisms of the sup-lattice M will be meant the simple unital quantale of sup-preserving mappings from M to itself, with the supremum given by the pointwise ordering of mappings, with the multiplication corresponding to the composition of mappings, and with the unit given by the identity mapping.

1. Q-MODULES

Definition 1.1[1, 11]. Let Q be a quantale. A left module over Q (briefly, a left Q-module) is a sup-lattice M, together with a module action -•-: $Q \times M \to M$ satisfying

$$(a \cdot b) \bullet m = a \bullet (b \bullet m) \tag{M1}$$

$$(\bigvee S) = \bigvee \{ s \bullet m : s \in S \}$$
(M2)

A Note on Girard Bimodules

$$a \bullet \bigvee X = \bigvee \{a \bullet x : x \in X\}$$
(M3)

for all $a, b \in Q, m \in M, S \subseteq Q, X \subseteq M$. So we have two maps $- \twoheadrightarrow_l -:$ $M \times M \to Q$ and $- \twoheadrightarrow_r -: Q \times M \to M$ such that, for all $a \in Q, m, n$, $\in M, a \bullet m \le n$ iff $a \le m \twoheadrightarrow_l n$ iff $m \le a \twoheadrightarrow_r n$. *M* is called a *unital Q*-module if *Q* is a unital quantale with the unit *e* and $e \bullet m = m$ for all $m \in M$.

Let *M* and *N* be modules over *Q* and let $f: M \to N$ be a sup-lattice homomorphism, *f* is a *module homomorphism* if $f(a \bullet m) = a \bullet f(m)$ for all $a \in Q, m \in M$.

Note first that if *M* is a sup-lattice, then *M* is a left Q(M)-module such that $f \bullet m = f(m)$ for all $f \in Q(M)$ and all $m \in M$. Second, we may dually define the notion of a (unital) *right Q-module* with a right multiplication \diamond . We then have two maps $- \twoheadrightarrow_R - M \times M \to Q$ and $- \gg_L - Q \times M \to M$ such that, for all $a \in Q, m, n \in M, m \diamond a \leq n$ iff $a \leq m \twoheadrightarrow_R n$ iff $m \leq a \twoheadrightarrow_L n$. Moreover, all propositions stated for left *Q*-modules are valid in a dualized form for right *Q*-modules and conversely.

A *bimodule* M over a quantale Q is both a left Q-module with action \bullet and a right Q-module with action \diamond .

For every left *Q*-module *M* we have a *dual* right *Q*-module M^{op} with multiplication given by $a \rightarrow_r m$. Similarly, for every right *Q*-module *N* we have a *dual* left *Q*-module M^{op} . Note that, if *M* is unital, then M^{op} is unital.

Note that, for every involutive quantale Q and any left Q-module M we have a right Q-module M^* with the same lattice structure and a right multiplication \bullet_* defined by $m \bullet_* a = a^* \bullet m$. Following ref. 2, we shall say that a left Q-module is *involutive* if $a \bullet m = (a^* \twoheadrightarrow_r m^{\perp})^{\perp}$. This is equivalent to the fact that the quantale morphism $f: Q \to \mathfrak{Q}(M)$ defined by $f(a)(m) = a \bullet m$ is a morphism of involutive quantales.

We shall denote by *Q*-Mod, resp. Mod-*Q*, the category of left *Q*-modules resp., right *Q*-modules.

Let us make the following elementary observation. Evidently, for a quantale Q, any left Q-module M is a left unital Q[e]-module with Q[e] defined as in ref. 6 and the multiplication \bullet_e defined by

$$(a \vee \varepsilon) \bullet_e m = \begin{cases} a \bullet m & \text{if } \varepsilon = 0 \\ a \bullet m \vee m & \text{if } \varepsilon = e \end{cases}$$

So we may always assume that any left quantale module is unital over a unital quantale.

Note that, for any quantale Q, any left Q-module M and all $n \in M$, the antitone maps $- \twoheadrightarrow_l n: M \to Q$ and $- \twoheadrightarrow_r n: Q \to M$ form a Galois connection between Q and M since, for all $a \in Q$ and all $m \in M$, $a \le (a \twoheadrightarrow_r n) \twoheadrightarrow_l n$ and $m \le (m \twoheadrightarrow_l n) \twoheadrightarrow_r n$. So we have that $m \twoheadrightarrow_l n = ((m \twoheadrightarrow_l n))$

807

Paseka

 $\twoheadrightarrow_r n$) $\twoheadrightarrow_l n$ and $a \twoheadrightarrow_r n = ((a \twoheadrightarrow_r n) \twoheadrightarrow_l n) \twoheadrightarrow_r n$. The same holds for the antitone maps $\longrightarrow_R n$: $M \to Q$ and $\longrightarrow_L n$: $Q \to M$.

Definition 1.2. Let Q be a quantale. A Girard bimodule over Q is a bimodule over Q with a duality $^{\perp}: M \to M$ such that

$$a \bullet m = (a \twoheadrightarrow_L m^{\perp})^{\perp}$$

for all $a \in Q$, $m \in M$.

Note that, in a Girard bimodule M, we have $m \diamond a = (a \twoheadrightarrow_r m^{\perp})^{\perp}$. Namely, $m \diamond a \leq n$ iff $m \leq a \twoheadrightarrow_L n$ iff $m \leq (a \bullet n^{\perp})^{\perp}$ iff $m^{\perp} \geq a \bullet n^{\perp}$ iff $n^{\perp} \leq a \twoheadrightarrow_r m^{\perp}$ iff $(a \twoheadrightarrow_r m^{\perp})^{\perp} \leq n$. Moreover, if Q' is a subquantale of Q, we have that M is a Girard bimodule over Q'.

Lemma 1.3. Let Q be a quantale, M a left Q-module with a duality $^{\perp}$. Then M is a Girard bimodule with the right action $\diamond: M \times Q \to M$ defined by $m \diamond a = (a \twoheadrightarrow_r m^{\perp})^{\perp}$.

Proof. Let $a, b \in Q, m \in M$. We have $(m \diamond b) \diamond a \leq n$ iff $(a \twoheadrightarrow_r (b \twoheadrightarrow_r m^{\perp}))^{\perp} \leq n$ iff $b \twoheadrightarrow_r m^{\perp} \geq a \bullet n^{\perp}$ iff $m^{\perp} \geq b \bullet (a \bullet n^{\perp})$ iff $m^{\perp} \geq (b \cdot a) \bullet n^{\perp}$ iff $(b \cdot a) \twoheadrightarrow_r m^{\perp} \geq n^{\perp}$ iff $((b \cdot a) \twoheadrightarrow_r m^{\perp})^{\perp} \leq n$ iff $m \diamond (b \cdot a) \leq n$. Similarly, we can prove that $m \diamond \dots : Q \to M$ and $\dots \diamond a : Q \to M$ are \lor -preserving maps for all $a \in Q$ and $m \in M$, i.e., we have a right module action \diamond . Let us prove that $a \bullet m = (a \twoheadrightarrow_L m^{\perp})^{\perp}$. We have $n \geq (a \twoheadrightarrow_L m^{\perp})^{\perp}$ iff $n^{\perp} \leq a \twoheadrightarrow_L m^{\perp}$ iff $n^{\perp} \diamond a \leq m^{\perp}$ iff $(a \twoheadrightarrow_r n)^{\perp} \leq m^{\perp}$ iff $a \twoheadrightarrow_r n \geq m$ iff $a \bullet n \leq n$.

Definition 1.4 [10]. Let Q be a quantale. An element $d \in Q$ is called a *dualizing element* iff for all $a \in Q$, we have $(a \rightarrow_r d) \rightarrow_l d = a = (a \rightarrow_l d) \rightarrow_r d$. An element $c \in Q$ is said to be *cyclic* iff $a \rightarrow_l c = a \rightarrow_r c$ for all $a \in Q$. A quantale is called a *Girard quantale* iff it has a cyclic dualizing element d.

Note that Girard quantales can be thought of as "Boolean quantales" [10]. Then, by the next theorems, Girard bimodules can be thought of as "Boolean modules" since we shall show that any Girard quantale is a Girard bimodule and that any quantale (involutive) quantale is an (involutive) subquantale of $\mathfrak{D}(M)$ for a suitable Girard bimodule.

Proposition 1.5. Let Q be a unital quantale with a duality $^{\perp}$ such that $a \cdot m = (a \rightarrow_l m^{\perp})^{\perp}$ for all $a, m \in Q$, i.e., Q is a Girard bimodule over Q. Then Q is a Girard quantale. Moreover, any Girard quantale is a Girard bimodule over itself.

Proof. Let us put $d = e^{\perp}$. We shall show that d is both cyclic and dualizing. We have $a \rightarrow_r e^{\perp} = (e \cdot a)^{\perp} = (a \cdot e)^{\perp} = a \rightarrow_l e^{\perp}$. Similarly,

 $(a \rightarrow_r e^{\perp}) \rightarrow_l e^{\perp} = [(a \rightarrow_r e^{\perp}) \cdot e]^{\perp} = [(e \cdot a)^{\perp} \cdot e]^{\perp} = a^{\perp \perp} = a \text{ and } (a \rightarrow_l e^{\perp}) \rightarrow_r e^{\perp} = a$. The rest follows from Proposition 6.1.2 of ref. 10.

Theorem 1.6. Let Q be quantale. Then we have a quantale embedding $i_0: Q \to \mathfrak{Q}(M)$ such that M is a Girard bimodule over Q.

Proof. By ref. 6, we know that any quantale *Q* is always embeddable into an unital quantale. So we may assume that *Q* is a unital quantale with the unit *e*. Let us define •: *Q* × (*Q* × *Q*^{op}) → *Q* × *G*^{op} and \diamond : (*Q* × *Q*^{op}) × *Q* → *Q*^{op} as follows: *a* • (*m*, *n*) = (*a* · *m*, *a* →_{*l*}*n*) and (*m*, *n*) \diamond *a* = (*m* · *a*, *a* →_{*r*}*n*) for all *a*, *m*, *n* ∈ *Q*. Then, when we define a duality [⊥]: *Q* × *Q*^{op} → *Q* × *Q*^{op} by (*m*, *n*)[⊥] = (*n*, *m*), we have (*a* →_{*L*}(*m*, *n*)[⊥])[⊥] = (*a* →_{*L*}(*n*, *m*))[⊥] = (\{*p*: *p* · *a* ≤ *n*\}, \land {*q*: *m* ≤ *a* →_{*r*}*q*})[⊥] = (\land {*q*: *m* ≤ *a* →_{*r*}*q*}, \lor {*p*: *p* · *a* ≤ *n*}) = (*a* · *m*, *a* →_{*l*}*n*) = *a* · (*m*, *n*). Let us put *M* = *Q* × *Q*^{op}. Then *M* is a Girard bimodule and we have a morphism *i*_{*Q*}: *Q* → $\mathfrak{D}(M)$ of quantales defined by *i*_{*Q*}(*a*)(*m*, *n*) = *a* • (*m*, *n*). Let *i*_{*Q*}(*a*) = *i*_{*Q*}(*b*). Then (*a*, *a* →_{*l*}*e*) = *i*_{*Q*}(*a*)(*e*, *e*) = *i*_{*Q*}(*b*)(*e*, *e*) = (*b*, *b* →_{*l*}*e*), i.e., *a* = *b* and *i*_{*Q*} is a quantale embedding.

Let $\varphi: M \to N$ be a join-preserving morphism of \bigvee -lattices. Then we have a right adjoint map $\varphi^{\downarrow}: N \to M$ preserving arbitrary meets. If *M* is a \bigvee -lattice with a duality $^{\perp}$, there is an involution on $\mathfrak{Q}(M)$ given by $\varphi^*(m) = (\varphi^{\vdash}(m^{\perp}))^{\perp}$.

Theorem 1.7 [6]. Let Q be an involutive quantale. Then we have an involutive quantale embedding $I_Q: K \to \mathfrak{Q}(M)$ such that M is an involutive Girard bimodule over Q.

Proof. Again, by ref. 6, we know that any involutive quantale *Q* is always involutively embeddable into a unital involutive quantale. So we may assume that *Q* is an involutive unital quantale with the unit *e*. Let us define •: $Q \times (Q \times Q^{op}) \rightarrow Q \times Q^{op}$ and \diamond : $(Q \times Q^{op}) \times Q \rightarrow Q \times Q^{op}$ as follows: $a \bullet (m, n) = (a \cdot m, a^* \rightarrow_r n)$ and $(m, n) \diamond a = (a^* \cdot m, a \rightarrow_r n)$ for all *a*, *m*, *n* ∈ *Q*. Then we have $(a \twoheadrightarrow_L (m, n)^{\perp})^{\perp} = (a \twoheadrightarrow_L (n, m))^{\perp} =$ $(\bigvee \{p: p \cdot a^* \le n\}, \land \{q: m \le a \rightarrow_r q\})^{\perp} = (\land \{q: a \cdot m \le q\}, \lor \{p: p \le a^* \rightarrow_r n\}) = (a \cdot m, a^* \rightarrow_i n) = \bullet (m, n)$. Let us put $M = Q \times Q^{op}$. Then *M* is a Girard bimodule. Moreover, we have $(a^* \twoheadrightarrow_r (m, n)^{\perp})^{\perp} = (a^* \twoheadrightarrow_r (n, m))^{\perp} = (\bigvee \{p: a^* \cdot p \le n\}, \land \{q: m \le (a^*)^* \rightarrow_l q\})^{\perp} = (\land \{q: a \cdot m \le q\}, \lor \{p: p \le a^* \rightarrow_r n\}) = (a \cdot m, a^* \rightarrow_r n) = a \bullet (m, n)$. We then have a morphism $I_Q: Q \rightarrow \mathfrak{Q}(M)$ of involutive quantales defined by $I_Q(a)(m, n) =$ $a \bullet (m, n)$ that is evidently a quantale embedding. ■

2. Q-VALUED MODULES

In this section we shall show that any Q-valued module M is representable together with the quantale Q as a concrete submodule and a concrete subquan-

tale of the simple involutive quantale $\mathfrak{Q}(S)$ for a suitable Girard bimodule *S* such that the module action coincides with the usual composition of mappings in $\mathfrak{Q}(S)$.

Definition 2.1 Let Q be a unital quantale, M a right (left) Q-module. We say that M is right (left) Q-valued if M is equipped with a map $\langle -, - \rangle$: $M \times M \to Q$, called the *inner product*, such that for all $a \in Q$, $m, n \in M$, and $m_i \in M$, where $i \in I$, the following conditions are satisfied:

- (i) $\langle m, n \rangle \diamond a = \langle m, n \diamond a \rangle (a \cdot \langle m, n \rangle = \langle a \bullet m, n \rangle).$
- (ii) $\bigvee_{i \in I} \langle m_i, n \rangle = \langle \bigvee_{i \in I} m_i, n \rangle.$
- (iii) $\bigvee_{i \in I} \langle m, m_i \rangle = \langle m, \bigvee_{i \in I} m_i \rangle.$
- (iv) $\langle -, m \rangle = \langle -, n \rangle$ ($\langle m, \rangle = \langle n, \rangle$) implies m = n.

A basic example of a right (left) Q-valued module is M = Q with the inner product $\langle m, n \rangle = m \cdot n$; another example is any right (left) complete ideal of Q with the same Q-valued inner product.

Definition 2.2. A representation of a right (left) *Q*-module *M* is a pair of maps (Φ, φ) such that *S* is a \vee -lattice with a duality, $\varphi: Q \to \mathfrak{Q}(S)$ is a representation of the quantale *Q*, and $\Phi: M \to \mathfrak{Q}(S)$ is a \vee -preserving oneto-one map such that

$$\Phi(m \diamond a) = \Phi(m) \circ \varphi(a) \qquad [\Phi(a \bullet m) = \varphi(a) \circ \Phi(m)]$$

for all $a \in Q$ and $m \in M$. A representation of a right (left) *Q*-valued module *M* is called *inner product-preserving* if $\varphi(\langle m, n \rangle) = \Phi^*(m) \circ \Phi(n)$ for all *m*, $n \in M$; here $\Phi^*: M \to \mathfrak{Q}(S)$ is a \bigvee -preserving one-to-one map such that $\Phi^*(m) = \Phi(m)^*$.

Theorem 2.3. Let Q be a unital quantale, M a right Q-module. Then we have a representation (Φ, φ) such that S is a Girard bimodule over Q.

Proof. First we shall show that any right *Q*-module *M* can be always embedded into a certain quantale $\Lambda(M)$. Denote by $N = Q \times M$ the right *Q*-module

We can identify each element $m \in M$ with the operator $m^{\sim}: Q \to M$ defined by $a \mapsto m \diamond a$ and each element $b \in Q$ with the operator $b^{\sim}: Q \to Q$ given by $b^{\sim}(c) = b \cdot c$. Note that $b^{\sim} \circ c^{\sim} = (b \cdot c)^{\sim}$. Let $\Lambda(M)$ be the subset of $\mathfrak{Q}(N)$ consisting of all \bigvee -preserving maps on N that can be represented by matrices of the form

$$\begin{bmatrix} f & g \\ h & \psi \end{bmatrix}$$

 $f \in \mathcal{Q}(Q), g \in \mathbf{Sup}(M, Q), h \in \mathbf{Sup}(Q, M), \psi \in \mathcal{Q}(M)$. Note that the composition of such matrices is defined as follows:

A Note on Girard Bimodules

$$\begin{bmatrix} f_1 & g_1 \\ h_1 & \psi_1 \end{bmatrix} \circ \begin{bmatrix} f_2 & g_2 \\ h_2 & \psi_2 \end{bmatrix} = \begin{bmatrix} f_1 \circ f_2 \lor g_1 \circ h_2 & f_1 \circ g_2 \lor g_1 \circ \psi_2 \\ h_1 \circ f_2 \lor \psi_1 \circ h_2 & h_1 \circ g_2 \lor \psi_1 \circ \psi_2 \end{bmatrix}$$

and evidently coincides with the usual composition of maps; here the action is defined as

$$\begin{bmatrix} f & g \\ h & \psi \end{bmatrix} (a, m) = (f(a) \lor g(m), h(a) \lor \psi(m))$$

Similarly, the join of such matrices is defined by

$$\bigvee_{i \in I} \begin{bmatrix} f_i & g_i \\ h_i & \psi_i \end{bmatrix} = \begin{bmatrix} \bigvee_{i \in I} f_i & \bigvee_{i \in I} g_i \\ \bigvee_{i \in I} h_i & \bigvee_{i \in I} \psi_i \end{bmatrix}$$

Then $\Lambda(M)$ is a unital subquantale of $\mathfrak{Q}(N)$; the unit id_N can be represented by the matrix

$$\begin{bmatrix} \mathrm{id}_Q & 0 \\ 0 & \mathrm{id}_M \end{bmatrix}$$

 $\Lambda(M)$ will enable us to exploit the representation theory of quantales in studying *M*. We shall identify *Q*, *M*, and $\mathfrak{Q}(M)$ with subsets of $\Lambda(M)$ in the obvious way:

$$Q \cong \begin{bmatrix} Q^{\sim} & 0\\ 0 & 0 \end{bmatrix}, \qquad M \cong \begin{bmatrix} 0 & 0\\ M^{\sim} & 0 \end{bmatrix}, \qquad \mathfrak{Q}(M) \cong \begin{bmatrix} 0 & 0\\ 0 & \mathfrak{Q}(M) \end{bmatrix}$$

After this identification, the module multiplication $\diamond: M \times Q \to M$ becomes a part of the internal multiplication of $\Lambda(M)$; namely,

$$\begin{bmatrix} 0 & 0 \\ m^{\sim} & 0 \end{bmatrix} \circ \begin{bmatrix} a^{\sim} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ (m \diamond a)^{\sim} & 0 \end{bmatrix}$$

By Theorem 1.6, we have a quantale representation $\pi: \Lambda(M) \to \mathfrak{Q}(S)$ such that *S* is a Girard bimodule over the quantale $\Lambda(M)$. Then by restriction π defines two maps $\varphi = \pi | Q$ and $\Phi = \pi | M$ which together constitute a representation of the right *Q*-module *M*.

Corollary 2.4. Any right (left) Q-module M can be equipped with a structure of a right (left) Q'-valued module such that Q is a subquantale of Q'.

Proof. It follows from Theorem 2.3 if we put $Q' = \Lambda(M)$.

Theorem 2.5. Let Q be a unital quantale, M a right Q-valued module. Then we have an inner product-preserving representation (Φ, φ) such that S is a Girard bimodule over Q. *Proof.* As before, we shall show that any right Q-valued module M always can be embedded into a the quantale $\Lambda(M)$ from Theorem 2.3. Then $N = Q \times M$ is equipped with the inner product

$$\langle (a, m), (b, n) \rangle = a \cdot b \lor \langle m, n \rangle$$

We can identify each element $m \in M$ with the operator $m^*: M \to Q$ defined by $n \mapsto \langle m, n \rangle$. We may identify M with a subset of $\Lambda(M)$ in the obvious way:

$$M \cong \begin{bmatrix} 0 & M^* \\ 0 & 0 \end{bmatrix}$$

This subset is called the *conjugate module* of M and is denoted by M^* . We then put $\Phi^* = \pi | M^*$. The *Q*-valued inner product $\langle m, n \rangle$ of M becomes simply the product $m^* \circ n^\sim$. Namely, we have

$$\begin{bmatrix} 0 & m^* \\ 0 & 0 \end{bmatrix} \circ \begin{bmatrix} 0 & 0 \\ n^{\sim} & 0 \end{bmatrix} = \begin{bmatrix} \langle m, n \rangle^{\sim} & 0 \\ 0 & 0 \end{bmatrix}$$

The rest follows from Theorem 2.3. ■

ACKNOWLEDGMENTS

Financial Support of the Grant Agency of the Czech Republic under Grant No. 201/96/0119 is gratefully acknowledged. The author also thanks referee for helpful comments and suggestions improving the presentation of this paper.

REFERENCES

- S. Abramsky and S. Vickers, Quantales, observational logic and process semantics, *Math. Struct. Comp. Sci.* 3 (1993) 161–227.
- D. Kruml, A characterization of spatial quantales, Diploma thesis, Department of Mathematics, Masaryk University (1998). [in Czech].
- B. Magajna, Hilbert modules and tensor products of operator spaces, in *Linear Operators Banach Center Publications*, Vol. 38, (1997), pp. 227–246.
- 4. C. J. Mulvey and J. W. Pelletier, A quantisation of points, J. Pure Appl. Algebra, in press.
- J. Paseka, Simple quantales, in Proceedings of the Eighth Prague Topological Symposium 1996 (Topology Atlas 1997), pp. 314–328.
- 6. J. Paseka and D. Kruml, Embeddings of quantales into simple quantales, J. Pure Appl. Algebra, in press.
- 7. J. Paseka, A note on quantale modules, preprint (1998).
- 8. J. W. Pelletier and J. Rosický, Simple involutive quantales, J. Algebra 195 (1997) 367-386.
- P. Resende, Quantales, finite observations and strong bisimulation, Dept. Math., Instituto Superior Técnico, preprint 26/97 (1997).
- 10. K. I. Rosenthal, Quantales and Their Applications, Longman, Essex (1990).
- 11. K. I. Rosenthal, The Theory of Quantaloids, Longman, Essex (1996).